ENGR xD52: HW b001

Due September 22™ Midnight EST

This homework prepares some of the gate level primitives you will use in the design of your processor.
You will reuse these modules in several future designs. Therefore, the structure and test will be in
separate modules.

This is to be done individually.

The Devices
This homework is based on the following three devices:

1. 2-bit decoder with enable (2+1 inputs, 4 outputs)
2. 4:1 (four input Multiplexor)
3. 1-bit Full Adder

The Test Benches
For each device, first write a test bench that verifies the appropriate behavior of your device. To get you
started, | have provided:

1) A completed test bench for the 2 bit decoder (this means you only have 2 to write yourself)
2) Versions of the three devices written in Behavioral Verilog. Your versions will be in Structural.

The test bench should:

1) Instantiate a copy of the device it is testing (Device Under Test = DUT)
2) Show what the truth table should be
3) Show what the truth table is

You may want to truncate the truth table for the 4 input multiplexer - it has 276 = 64 entries.

The Structural Devices
Create the three devices in Structural Verilog, using only the gate primitives we have already gone over:

NOT AND NAND OR NOR XOR
Do not use behavioral constructs such as ‘assign’ or ‘case’.

Give all of your gates a delay of 50 units of time.



The Write Up

This should be a no frills pdf containing pictures of your test bench results and your waveforms that
show the gate propagation delays.

Submission
Submit a zip file with the following to Comparch14@gmail.com:

1) Your modified do file
2) Your 3 Verilog Files
3) Your writeup as a pdf

Hints / Tricks
Gate delays

In order to model some sort of delay for our gates, simply put these statements at the top of your
Verilog source:

// define gates with delays
“define AND and #50
“define OR or #50

“define NOT not #50

Then, when you go to instantiate an AND, for instance, instead of using just “and”, use "AND. That is,
back-tick followed by the define you specified. Think of the back-tick as a macro definition.

That means that the gate, "AND, has a delay of 50 units. Then, in your simulation, you should wait
between transitions of the input long enough to allow the signals to propagate to the output of your
circuit.

Signal Declaration
You need to declare all your inputs and outputs and all the intermediate signals you use in your designs.
Thus, if you have the statement:

and (out, in1, in2)
You need to have previously declared out, in1, and in2, to be some sort of physical entity (wire, reg).

Tutorials
These may be helpful:

http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/VerilogTutorial.pdf

http://asic-world.com/verilog/index.html



mailto:Comparch14@gmail.com
http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/VerilogTutorial.pdf
http://asic-world.com/verilog/index.html

http://www.asic-world.com/verilog/art testbench writingl.html

http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/modelsim se tut.pdf

http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/m gk guide.pdf

http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/test logic.v

Do Commands
If you do something repeatedly, add it to your do file. Here is my do file while | was debugging the
multiplexer:

vlog -reportprogress 300 -work work multiplexer.v decoder.v adder.v
vsim -voptargs="+acc" testDecoder
add wave -position insertpoint \
sim:/testDecoder/addr0 \
sim:/testDecoder/addrl \
sim:/testDecoder/enable \
sim:/testDecoder/out0 \
sim:/testDecoder/outl \
sim:/testDecoder/out2 \
sim:/testDecoder/out3

run -all

wave zoom full

add wave ... allows you to automatically populate your waveform viewer.
wave zoom full automatically zooms the viewer to see the entire waveform.

Run -all attempts to intelligently decide how long to run for. Note that it is possible to get stuck
simulating forever with this option.

Note that it compiles three .v files.


http://www.asic-world.com/verilog/art_testbench_writing1.html
http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/modelsim_se_tut.pdf
http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/m_qk_guide.pdf
http://ca.olin.edu/cawiki/attachments/Fall(20)2010(2f)Materials/test_logic.v

