
FPGA Implementations of
Initial-Value Problem Solving Methods

Nick Eyre Olin College December 16, 2014

Abstract—In this project, two methods of solving initial-value
problems are explored with reference to implementation on a
field programmable gate array (FPGA). FPGAs allow for many
digital operations to be parallelized to improve performance. Fur-
thermore, methods of simulating gate array systems in Simulink
are explored. The methods are simulated in Simulink and also
written in MIPS assembly code to compare the computational
efficiency of comparable algorithms on gate array and embedded
microcontroller systems. In the end, both Euler’s method and a
modified trapezoidal Euler’s method were successfuly simulated
and show promise for good performance on an FPGA.

I. BACKGROUND INFORMATION

In this paper, we explore methods of solving initial value
problems. Initial value problems are ordinary differential equa-
tions along with initial conditions. These types of problems are
commonly used in fields such as dynamics to solve Newton’s
second law for a variety of input forces.

This project will use the differential equations governing
the motion of a baseball thrown vertically into the air.1 This
system is controlled by a second order differential equation
which can be transformed into two first-order differential
equations (Equation 1). Note that these equations ignore the
force due to spin, the Magnus force.

dy

dt
= v

dv

dt
= g − ρACd

2m
v|v|

(1)

One important concept is that of state variables. A state
variable represents and holds on to the current state of a system
(a register). In this system, we have two states: v and y. An
initial-value solver uses a discrete integrator to transform the
continuous state into a series of approximate discrete states.

Some realistic constants for a baseball are given below. For
the purpose of our simulation, we assume that the baseball is
launched upward at a velocity of 100 m/s. While this is a bit
fast for the average pitcher, it makes our math easier.

g = −9.81 m/s2

Cd = 3× 10−1

ρ = 1.3 kg/m3

A = 4.2× 10−3 m2

m = 1.45× 10−1 kg
v0 = 1.00× 102 m/s

(2)

1Equations taken from Olin College Numerical Methods Case Study I by
John Geddes, Fall 2014

Scaling to Integer Math

Note that the math becomes easier to implement on an
FPGA if this system can be scaled so that all math is done
as integers. To do this, we will replace the SI base units of m
and s with µm (micrometers) and cs (centiseconds).

Now, our parameters are as follows:

g = −9.81× 102 µm/cs2

ρACd

2m
= 5.9× 10−9 1/µm

v0 = 1.000 000× 106 µm/cs

(3)

These values, while they may seem odd, will mostly allow
us to operate within the limits of our space. Note that the large
initial value for velocity will not quite fit into a 32 bit signed
integer. On the FPGA, this could be represented with 33 bits
instead.

II. SIMULINK FOR FPGA CODE DESIGN

Simulink, part of MATLAB, is a graphical programming
language that can be used for modeling systems with a high
degree of concurrency. Simulink has a number of blocks that
are useful for modeling systems to be implemented on FPGAs
and when put into discrete time mode, it can be compiled into
clocked hardware description language (HDL) code such as
Verilog or VHDL.

Input

Full Adder

Group Signals

Bit Shift

Integer Multiplication

Absolute Value

Output

Constant Value

Ungroup Signals

Multiply by Constant

Discrete Time Integrator
(Adder + Register)

TABLE I: Simulink Symbols Used

The blocks used in this project are given in Table I. All of
these blocks are easily implemented in Verilog. Note that the
discrete time integrator used simply starts with an initial value
x0 and adds a derivative to a register once per clock cycle, a
function which would be easily implemented in Verilog.

Also notable is that although the simulation built uses
multiplication by a constant, this function would be easily
replaced by easier bit shift operations by scaling all equations
so that multiplication is by powers of two.

Note that although Simulink was used for modeling the
systems presented in this paper, the systems were not compiled
into HDL code and tested on FPGAs due to a lack of access
to the necessary MATLAB toolbox.

III. BUILDING BLOCKS

The first step in modeling this system is to create several
reusable modules in Simulink that represent core parts of the
system. These modules can be used in any initial-value solver.

Although these blocks were not implemented in Verilog,
they contain components that would be easy to implement.

State Integrator Block

The first block built was a state integrator (Figure 1). This
block manages the states of the system and has one discrete
time integrator for each of the state variables and time. The
block takes in the derivatives of each of the state variables,
multiplies it by the timestep and returns the values of the state
registers.

Fig. 1: State Integrator Block

Dynamic Model Block

The second block built was a block depicting the dynamic
model of the system (Figure 2). This block takes the current
states as an input, calculates the forces on the system based
on the current states and returns the derivatives of each of
the two state variables. This dynamic model accounts for the
forces due to gravity and drag.

Note that drag requires squaring the value of a state. This
is accomplished by putting the result of this multiplication
operation into a 64-bit register and discarding the lower 32

bits when multiplying by the drag coefficient. As the scaled
drag coefficient is relatively close to 2−32, this does not affect
the accuracy of the calculation significantly.

Fig. 2: Dynamic Model Block

The dynamic model block also provides the initial condi-
tions for both of the states.

IV. EULER’S METHOD

Euler’s method is the most basic method for solving
ordinary differential equations. In Euler’s method, the deriva-
tives of the state variables at each state are integrated for
the full timestep. This is also known as a forward tangent
approximation. Because the tangent at one state is projected
forward for the next timestep without consideration for the
tangent at the future point, this method has substantial error
(Figure 3).

Fig. 3: Euler’s Method Approximation2

This method was implemented in Simulink by connecting
the state integrator block directly with the dynamic model
block (Figure 4). This feeds the derivative of the states into the
integrator to integrate it for the duration of the next timestep.

The results from this simulation are given in Figure 6 for
a timestep ∆T of 32 cs.

2From http://en.wikipedia.org/wiki/Euler method

0 2 4 6 8 10 12
0

50

100

150

200
Method Comparison

Time (s)

H
ei

gh
t (

m
)

Euler
ModEuler

Fig. 5: Comparison of results from two methods.

Fig. 4: Euler’s Method Simulation

0 2 4 6 8 10 12
0

50

100

150

200
Eulers Method

Time (s)

H
ei

gh
t (

m
)

Fig. 6: Euler’s Method Results

Euler’s method was also implemented in MIPS assembly
code to compare the performance of this Simulink model with
that which could be expected on an embedded microcontroller.
Obviously, the huge difference between clock speeds of our
FPGA-based system and a personal computer would give a
speed edge to the computer — a microcontroller is a more
fair comparison. The code is given in Appendix A.

All of the logic in the Simulink model could be performed
in one clock cycle on an FPGA for each time step (assum-
ing proper support for integer multiplication). However, the
assembly code written compiles to 7 + 17n lines of machine
code where n is the number of time steps. This is much more
clock cycles than required on the FPGA. If the clock speed
of the FPGA could be raised high enough, this would give
quite the advantage to the parallelism offered by the FPGA.
Unfortunately, as this code was not put onto an FPGA, the
clock speed was not able to be computed.

V. TRAPEZOIDAL EULER’S METHOD

A modified trapezoidal Euler’s method was next imple-
mented as an attempt to increase the accuracy of the sim-
ulation. This method calculates the derivative at the current
state and temporarily updates the state with this derivative.
The derivative is then calculated at this new state and the
two derivatives are avearged. This has the effect of calculating
the derivative in both direction at every point and applying it
in both directions. This is alike to the trapezoidal method of
integral approximation

The method was implemented in Simulink by connecting
one system model block to another to calculate the derivatives
at both ends of the curve. Both derivatives are then averaged
to get the derivative to be applied to the states (Figure 7).

Fig. 7: Trapezoidal Euler’s Method Simulation

The results of this simulation when compared to the Euler’s
method simulation is shown in Figure 5 for ∆T of 16 cs.
As shown, for this relatively large number of time steps, the
results match closely for the two methods. With a larger ∆T,

the difference between the two cases would be larger.

The trapezoidal Euler’s method was also implemented in
MIPS assembly code as before. All of the logic in the Simulink
model can still be performed in one clock cycle on an FPGA,
albeit likely with a slower clock speed due to the linear
chaining of computation blocks. The assembly code compiled
to 7 + 33n clock cycles where n is the number of time steps.
This is significantly more clock cycles than the FPGA which
is able to compute much of the math simultaneously.

VI. CONCLUSIONS

In conclusion, two solvers were successfully designed and
simulated for implemenation on an FPGA. Although these
solvers were not actually synthesized onto an FPGA, they are
built such that they could be, either by using the appropriate
MATLAB HDL Coding toolbox or by converting the code
to Verilog. Furthermore, the code was modularized such that
more complicated solving algorithms such as one of the Range-
Kutta methods could be implemented with relative ease.

The heavily-parallelized nature of an FPGA proves to be
an advantageous way of solving initial value problems which
rely on performing a large number of computations at once
and then integrating these derivatives. This structure allows
for more computations to happen in a given clock cycle and
more things to happen at once than on a traditional computer.
Although this code when synthesized will probably not support
clock speeds anywhere near those offered by modern desktop
computers, an FPGA could be a compelling alternative to
performing dynamic simulations on a small embedded system.

However, there are still multiple items which must occur
in series, especially with higher order solvers. FPGA-based
initial-value problem solvers could prove even more advanta-
geous in systems where more forces are involved and must be
calculated indendently. Furthermore, difficulties may arise in
dealing with more complicated systems that make heavy use
of division or more complicated mathematical functions that
are harder to synthesize onto an FPGA.

VII. FUTURE WORK

Several minor issues were faced over the course of this
project. Most notably, I ran into an error in Simulink where
the solver was unable to compute the algebraic loop in the
trapezoidal solver for a timestep ∆T greater than 16 cs. I think
I probably could have figured out this issue given more time.
Furthermore, I tried to implement an adaptive-timestep solver
using the difference between the two methods as the error but
failed to implement this.

Possible Next Steps

Future work on this project could be directed into one of
a number of areas:

• Extend the solvers to use floating point math. This
would allow for more precise calculations and would
elminate the need for scaling into strange unit systems
to simplify calculations.

• Convert the Simulink code presented into synthesiz-
able HDL code in Verilog or VHDL. This would
allow for a more complete comparison of this system’s
performance relative to a microcontroller.

• Use the MATLAB HDL Coder Toolbox to synthesize
this code to a FPGA and test the systems presented.

• Implement this system to solve equations with a
greater number of state variables. This may require
normalizing vectors which may require a square root
function.

• Implement trigonometric functions which would allow
for systems with rotation to be more easily solved.

• Implement an adaptive-timestep solver or one of the
higher-order Range-Kutta methods. This would allow
for more accurate calculations and may make better
use of the FPGA’s capabilities.

Code, Schematics & Build Instructions

The assembly code provided in the appendix uses several
of the MIPS macros provided the MARS MIPS Simulator.3
The code should be able to be run as is in MARS or compiled
from MARS to Machine Code.

The images of Simulink models in this document are
complete and can be implemented exactly as shown. To run
these models, be sure to configure the Simulink model to run
in discrete time instead of the default continuous time.

Simulink for HDL Development

Simulink proved to be a very valuable tool for development
and simulation of systems to be implemented in FPGA code.
I would highly recommend that this tool be used in future
Computer Architecture classes as it provides a nice way to go
straght from block diagrams to working systems. Verilog could
still be used to implement lower level structural functions. I
think the two tools could be used in parallel to improve the
labs in the course.

3http://courses.missouristate.edu/KenVollmar/MARS/

APPENDIX A
EULER’S METHOD ASSEMBLY CODE

E u l e r P r o j e c t i l e S i m u l a t i o n
Uses 7+17n Clock Cyc l e s

S e t I n i t i a l C o n d i t i o n s
l i $ t0 , 0 # Y
l i $t1 ,1000000 # V
l i $t4 , 0 # S tep Count
l i $ t5 , 0 # T
l i $t6 , 1 5 # dT
l i $t7 , 1 0 0 # S t e p s

MAINLOOP:

While T < T End
bge $t4 , $t7 ,ENDPROGRAM

dYdT
mul $a0 , $t1 , $ t 6
add $t0 , $t0 , $a0

dVydT
abs $a0 , $ t 1
mul t $a0 , $ t 1
mfhi $a0
mul $a0 , $a0 ,−23
a d d i $a0 , $a0 ,−981
mul $a0 , $a0 , $ t 6
add $t1 , $t1 , $a0

I n c r e m e n t Time Coun te r
add $t5 , $t5 , $ t 6
a d d i $t4 , $t4 , 1

j MAINLOOP

ENDPROGRAM:

APPENDIX B
TRAPEZOIDAL EULER’S METHOD ASSEMBLY CODE

Modi f i ed E u l e r P r o j e c t i l e S i m u l a t i o n
Uses 7+33n Clock Cyc l e s

S e t I n i t i a l C o n d i t i o n s
l i $ t0 , 0 # Y
l i $t1 ,1000000 # V
l i $t4 , 0 # S tep Count
l i $ t5 , 0 # T
l i $t6 , 1 5 # dT
l i $t7 , 1 0 0 # S t e p s

MAINLOOP:

While T < T End
bge $t4 , $t7 ,ENDPROGRAM

CALCULATE FORWARD VALUE

dYdT
mul $a0 , $t1 , $ t 6
add $t2 , $t0 , $a0

dVydT
abs $a0 , $ t 1
mul t $a0 , $ t 1
mfhi $a0
mul $a0 , $a0 ,−23
a d d i $a0 , $a0 ,−981
mul $a0 , $a0 , $ t 6
add $t3 , $t1 , $a0

CALCULATE BACKWARD VALUE & AVERAGE

dYdT
mul $a0 , $t3 , $ t 6
add $t0 , $t0 , $a0
add $t0 , $t0 , $ t 2
s r a $t0 , $t0 , 1

dVydT
abs $a0 , $ t 3
mul t $a0 , $ t 3
mfhi $a0
mul $a0 , $a0 ,−23
a d d i $a0 , $a0 ,−981
mul $a0 , $a0 , $ t 6
add $t1 , $t1 , $a0
add $t1 , $t1 , $ t 3
s r a $t1 , $t1 , 1

I n c r e m e n t Time Coun te r
add $t5 , $t5 , $ t 6
a d d i $t4 , $t4 , 1

j MAINLOOP

ENDPROGRAM:

