User Tools

Site Tools


2014:vacuum_tube_sr_latch

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
2014:vacuum_tube_sr_latch [2014/12/16 09:36]
fbourke
2014:vacuum_tube_sr_latch [2014/12/18 23:43] (current)
fbourke
Line 1: Line 1:
 +====== Vacuum Tube SR Latch ======
 +with Forrest & Ruby
  
-==== Abstract ====+^           Our 12AX7 Vacuum Tubes           ^ 
 +|            {{ 2014:​img_4256b.jpg?​1024 }}             | 
 +====== Abstract ​======
 We investigated 1940s era computers—esp. the [[http://​en.wikipedia.org/​wiki/​ENIAC|ENIAC]] (Electronic Numerical Integrator And Computer)—and,​ using this knowledge, designed and constructed a basic bistable functioning element used in digital computers—the Set-Reset Latch, or simply SR Latch. Our ENIAC-based SR Latch design uses four triode vacuum tubes, basic analog components, and optional neon lights for output state indication. ​ We investigated 1940s era computers—esp. the [[http://​en.wikipedia.org/​wiki/​ENIAC|ENIAC]] (Electronic Numerical Integrator And Computer)—and,​ using this knowledge, designed and constructed a basic bistable functioning element used in digital computers—the Set-Reset Latch, or simply SR Latch. Our ENIAC-based SR Latch design uses four triode vacuum tubes, basic analog components, and optional neon lights for output state indication. ​
  
-==== Background Info ==== +====== Background Info ====== 
-=== The SR Latch ===+===== The SR Latch =====
 The Set-Reset Latch, or SR Latch, is a basic element in digital computing. It has two inputs, Set and Reset, and either one or two outputs (which we refer to as ''​Q''​ and ''​nQ''​). ''​Q''​ and ''​nQ''​ are always opposites (hence the binary nomenclature). Our latch is falling-edge triggered, meaning when Set or Reset transitions from a high to low state the states of ''​Q''​ and ''​nQ''​ are updated. Our latch is transparent,​ meaning the output is updated immediately upon the inputs changing, and it ignores rising-edge transitions. Some latches have enable inputs that can make them opaque, but ours does not offer this feature. We do, however, offer suggestions on how to extend our latch to have an enable input. The logic table for our latch is shown in the table below. A careful reader might notice that the condition for which both set and reset fall at the same time is not shown on the diagram. This case is not possible—in reality, the second edge will take precedence, or internal manufacturing inconsistencies in the tubes will dominate. The Set-Reset Latch, or SR Latch, is a basic element in digital computing. It has two inputs, Set and Reset, and either one or two outputs (which we refer to as ''​Q''​ and ''​nQ''​). ''​Q''​ and ''​nQ''​ are always opposites (hence the binary nomenclature). Our latch is falling-edge triggered, meaning when Set or Reset transitions from a high to low state the states of ''​Q''​ and ''​nQ''​ are updated. Our latch is transparent,​ meaning the output is updated immediately upon the inputs changing, and it ignores rising-edge transitions. Some latches have enable inputs that can make them opaque, but ours does not offer this feature. We do, however, offer suggestions on how to extend our latch to have an enable input. The logic table for our latch is shown in the table below. A careful reader might notice that the condition for which both set and reset fall at the same time is not shown on the diagram. This case is not possible—in reality, the second edge will take precedence, or internal manufacturing inconsistencies in the tubes will dominate.
  
Line 18: Line 22:
  
  
-=== How Vacuum Tubes Work ===+===== How Vacuum Tubes Work =====
 ^           The simple triode symbol on the left shows the three electrodes: cathode (k, heater shown underneath),​ grid (g), and anode (a). The right side image is the diagram of the 12AX7 with pin layout. ​          ^ ^           The simple triode symbol on the left shows the three electrodes: cathode (k, heater shown underneath),​ grid (g), and anode (a). The right side image is the diagram of the 12AX7 with pin layout. ​          ^
 |            {{ 2014:​triodes.png?​640 | The simple triode symbol on the left shows the three electrodes: cathode (k, heater shown underneath),​ grid (g), and anode (a). The right side image is the diagram of the 12AX7 with pin layout.}} ​            | |            {{ 2014:​triodes.png?​640 | The simple triode symbol on the left shows the three electrodes: cathode (k, heater shown underneath),​ grid (g), and anode (a). The right side image is the diagram of the 12AX7 with pin layout.}} ​            |
Line 24: Line 28:
 A vacuum tube is, at it's highest level of abstraction,​ a device that controls a flow of current. Vacuum tubes operate on the principle of thermionic emission. Thermionic emission is the principle that energy in the form of heat can induce a flow of electrons from a filament (the heated cathode) to an anode. In the case of a triode, the grid electrode is a mesh or wire grate that allows or blocks thermionic emission to occur between the filament and the anode. The grid is typically held at a negative potential relative to the cathode. The more negative the grid is, the stronger the negative electric field it produces, the stronger the electrons from the cathode are repelled. Control is possible by pulling the grid closer in potential to the cathode (grid more positive), thus allowing electrons to pass through to the anode and current to flow through the tube. A small change in grid potential can produce a large change in current. The ratio of these changes is called the transconductance of the tube, expressed as <​math>​gm</​math>​and in units of mhos (inverse ohms). In operation, our tubes have a transconductance of approximately 0.0015 mhos, meaning a change of 1V on the grid produces a change of 1.5mA flowing through the tube.  A vacuum tube is, at it's highest level of abstraction,​ a device that controls a flow of current. Vacuum tubes operate on the principle of thermionic emission. Thermionic emission is the principle that energy in the form of heat can induce a flow of electrons from a filament (the heated cathode) to an anode. In the case of a triode, the grid electrode is a mesh or wire grate that allows or blocks thermionic emission to occur between the filament and the anode. The grid is typically held at a negative potential relative to the cathode. The more negative the grid is, the stronger the negative electric field it produces, the stronger the electrons from the cathode are repelled. Control is possible by pulling the grid closer in potential to the cathode (grid more positive), thus allowing electrons to pass through to the anode and current to flow through the tube. A small change in grid potential can produce a large change in current. The ratio of these changes is called the transconductance of the tube, expressed as <​math>​gm</​math>​and in units of mhos (inverse ohms). In operation, our tubes have a transconductance of approximately 0.0015 mhos, meaning a change of 1V on the grid produces a change of 1.5mA flowing through the tube. 
  
-==== Why bother with old technology? ====+====== Why bother with old technology? ​======
 Studying the engineering decisions behind old technology is fascinating. Looking around the Internet, descriptions of how vacuum tubes work are sparse and usually focused on audio electronics. We intend this page to become a resource for any designer looking to build digital logic from vacuum tubes, or on a broader scale, someone with a similar background to the authors looking to understand the functioning of vacuum tubes. Studying the engineering decisions behind old technology is fascinating. Looking around the Internet, descriptions of how vacuum tubes work are sparse and usually focused on audio electronics. We intend this page to become a resource for any designer looking to build digital logic from vacuum tubes, or on a broader scale, someone with a similar background to the authors looking to understand the functioning of vacuum tubes.
  
 +===== Your first tube project? =====
 +The authors would not recommend attempting to replicate this project as a first introduction to vacuum tubes, unless one is especially set on doing some sort of digital logic. We would suggest attempting to build a tube-based headphone amplifier, such as [[http://​diyaudioprojects.com/​Solid/​12AU7-IRF510-LM317-Headamp|this one]].
  
-==== What we did ====  
-%This portion can assume an audience that has taken Computer Architecture,​ but don't get burdened by buzzwords. A sure sign of a bad engineer is over reliance on acronyms. 
-TODO How to read tube diagram 
-TODO Explanation of parameters 
  
-=== Re-designing from ENIAC Documentation ===+====== What we did ======  
 +===== Re-designing from ENIAC Documentation ===== 
 +Our design is based around the design we found in this [[http://​archive.computerhistory.org/​resources/​text/​Knuth_Don_X4100/​PDF_index/​k-8-pdf/​k-8-r5367-1-ENIAC-circuits.pdf|paper]]. 
 There are a few "​quirks"​ modern engineers may not be used to when reading the documentation for ENIAC. The first and most obvious is what we call an SR Latch, they call a flip-flop. In current parlance, flip-flops are clocked elements while latches are not—ours are simply transparent. There are a few "​quirks"​ modern engineers may not be used to when reading the documentation for ENIAC. The first and most obvious is what we call an SR Latch, they call a flip-flop. In current parlance, flip-flops are clocked elements while latches are not—ours are simply transparent.
  
Line 46: Line 51:
  
  
-==== Building up from an SR Latch ====  +====== Building up from an SR Latch ======  
-%TODO: Include everything necessary to pick up where you left off. This should include: +===== The Circuit ​=====
-\begin{itemize} +
-\item Code +
-\item Schematics notes on simulation +
-\item Build Instructions +
-\item List of difficulties and gotchas while doing the project +
-\item Work Plan reflection (OOPS) +
-\item Possible TODO to extend the depth of the project +
-\item ZIP file to submit to the wiki +
-\end{itemize} +
- +
-=== The Circuit ===+
  
 The following figure shows a circuit diagram of the ENIAC'​s Accumulator program control circuit. We took the SR Latch from this circuit (subcircuit inside blue dashed lines) to make our SR Latch. "​Set"​ is the input to the 0.001μF capacitor leading to triode 1 (U1 in our version), and "​Reset"​ is the input to the 0.001μF capacitor leading into triode 2 (U2 in our version). The neon light connected to ''​Q''​ indicates the states of ''​Q''​ and ''​nQ''​. The following figure shows a circuit diagram of the ENIAC'​s Accumulator program control circuit. We took the SR Latch from this circuit (subcircuit inside blue dashed lines) to make our SR Latch. "​Set"​ is the input to the 0.001μF capacitor leading to triode 1 (U1 in our version), and "​Reset"​ is the input to the 0.001μF capacitor leading into triode 2 (U2 in our version). The neon light connected to ''​Q''​ indicates the states of ''​Q''​ and ''​nQ''​.
Line 74: Line 68:
 To provide the 12V for the heaters, we simply purchased a modern switched-mode 12V power supply. In reality, the heaters would have most likely been fed from a transformer tap specifically designed to power the heaters. To provide the 165V for the positive rail, we simply directly rectified a 110V mains input and filtered it with a 120μF photoflash capacitor. For increased safety, it would have been better to use an isolation transformer,​ but we will leave this improvement for future engineers. ​ To provide the 12V for the heaters, we simply purchased a modern switched-mode 12V power supply. In reality, the heaters would have most likely been fed from a transformer tap specifically designed to power the heaters. To provide the 165V for the positive rail, we simply directly rectified a 110V mains input and filtered it with a 120μF photoflash capacitor. For increased safety, it would have been better to use an isolation transformer,​ but we will leave this improvement for future engineers. ​
  
-=== Mechanical Design ===+We tried several spice models, but we found the best ones [[http://​www.duncanamps.com/​technical/​ltspice.html|here]]. 
 + 
 +===== Mechanical Design ​=====
  
 We designed an enclosure for our SR Latch out of 1/4" acrylic. We used period-correct orange neon lights as indicators for Power On, Heaters On, ''​Q''​ and ''​nQ''​. We have uploaded our CAD files (designed in SolidWorks 2014) {{ 2014:​SRlatch.zip | here.}} We designed an enclosure for our SR Latch out of 1/4" acrylic. We used period-correct orange neon lights as indicators for Power On, Heaters On, ''​Q''​ and ''​nQ''​. We have uploaded our CAD files (designed in SolidWorks 2014) {{ 2014:​SRlatch.zip | here.}}
Line 80: Line 76:
 ^           ​Render of our Mechanical Design. ​          ^ ^           ​Render of our Mechanical Design. ​          ^
 |            {{ 2014:​isorender.jpg?​840 | Render of our mechanical design}} ​            | |            {{ 2014:​isorender.jpg?​840 | Render of our mechanical design}} ​            |
 +^           Our Finished Box           ^
 +|            {{ 2014:​img_4257b.jpg?​840 }}             |
 +
 +===== Analysis of Our Plan =====
 +We stated that building an SR latch was a yellow "​intermediate"​ goal, and we're happy to have accomplished this. We did investigate doing other digital logic with vacuum tubes. We found a source called [[http://​www.quadibloc.com/​comp/​cp01.htm|What Computers are Made From]] that has two schematics: a tube NOR gate shown as two triodes with their plates tied together, and a tube NAND gate that is shown as a pentode with the top and bottom grids attached to the inputs. While we purchased a few pentode tubes, we decided to focus on the 12AX7s. In our SPICE file, we began experimenting with making an AND gate out of 12AX7 triodes. Under incredibly specific input conditions, it worked well, but it required precise voltage dividers and would probably be a pain to construct.
 +
 +A "​gotcha"​ we encountered when building our mechanical system was trying to fit our circuitry into the box. Our latch worked outside of the box, but when we closed the box it caused one of our outputs to short. It's always a good idea to use removable glue the first time you glue your box together!
 +
 +^           Top View of Our Finished Box           ^
 +|            {{ 2014:​img_4258b.jpg?​840 }}             |
 +
 +
 +===== Useful Links =====
 +http://​www.ludd.luth.se/​~ragge/​vtc/​
 +http://​www.quadibloc.com/​comp/​cp01.htm
 +http://​www.google.com/​patents/​US2784312
 +http://​archive.computerhistory.org/​resources/​text/​Knuth_Don_X4100/​PDF_index/​k-8-pdf/​k-8-r5367-1-ENIAC-circuits.pdf
 +SPICE models from: http://​www.duncanamps.com/​technical/​ltspice.html
 +
 +
2014/vacuum_tube_sr_latch.1418740617.txt.gz · Last modified: 2014/12/16 09:36 by fbourke